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1. Uvod
1.1. Aluminij kao materijal

Unato¢ tome §to je aluminij tre¢i najrasprostranjeniji element u zemljinoj kori, postojanje
elementa aluminija otkriveno je tek pocetkom 19. stoljeca, €ine¢i ga relativnho novim
materijalom. Kada je predstavljen u Cistoj formi, smatran je plemenitim metalom skupljim od
platine. S obzirom da kao Cist metal ima loSa mehanicka svojstva, za primjenu aluminija u
nosivim konstrukcijama bilo je potrebno razviti odgovarajuce legure. Legiranjem aluminija
ovisno o legirnom elementu postizu se razli¢ite legure odnosno skupina legura aluminija s
karakteristicnim mehani¢kim svojstvima. U konstruktivne svrhe moguce je koristiti samo
pogodne 1 dokazane legure, zadovoljavajuc¢e CvrstoCe, otpornosti na koroziju, s dobrom
zavarljivos¢u 1 u skladu s potrebama pojedinog projekta. U 20. stolje¢u aluminijske legure
pocinju se primjenjivati u nosivim konstrukcijama, a danas aluminij uz ¢elik ¢ini najznacajniji
metal za primjenu u nosivim konstrukcijama u gradevinarstvu. Zbog karakteristi¢nih svojstava,
tijekom posljednjih nekoliko desetljeca, aluminijske legure sve viSe su u uporabi u
gradevinskoj industriji. Za razliku od Celika aluminij nije feromagnetican, ne hrda te se moze
koristiti bez boja 1 premaza, a jedna od razlika koja ga ¢ini izuzetno povoljnim za koristenje je
i gustoca koja je jednaka trecini gustoce Celika, Sto rezultira mnogo laksSim konstrukcijama
(tablica 1.). Mehanicka svojstva aluminija poboljSavaju se snizavanjem temperature te nije
sklon krtom lomu pri niskim temperaturama kao $to je to slucaj s ¢elikom. S obzirom da je
estetski atraktivnog izgleda, a kako ne zahtijeva dodatne zastitne premaze, izuzetno je
popularan i u ne-nosivim fasadnim sustavima. Dodatna prednost aluminija je i napredak
proizvodnih procesa te moguénost potpunog recikliranja aluminijskih legura pogodnih za
konstruktivnu namjenu, $to ga ¢ini izuzetno odrZivim [1]. Prema podacima Vijec¢a za aluminij
u gradnji, 2008. godine u uporabi je bilo 75% aluminija proizvedenog od kraja 19. stoljeca, a
procjenjuje se da ¢e izmedu 70% i 98% aluminija koji se koristi u dana$njim konstrukcijama
biti reciklirano [2]. Svakako je bitno naglasiti da se osnovna svojstva aluminija ne mijenjaju u
procesu reciklaze. Sam proces proizvodnje je izuzetno poboljSan u odnosu na kraj 20. stoljeca,
¢ime se u proizvodnji aluminijskih legura smanjilo zahtjeve potros$nje energije za vise od 75%,
Sto je dovelo do smanjenja emisija staklenickih plinova (ugljicnog otiska) za skoro 40% [3].
Takoder, prigodne legure lako se mogu ekstrudirati i u slozenije oblike popre¢nog presjeka, Sto
nije slucaj s koriStenjem ustaljenith materijala poput celika ili betona.

Slika 1. TheMCrystal, London — krV 1zrden od 100% reciklhrano.-gu'cllu)fnﬁlija [4]
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Jedna od prvih primjena aluminija zabiljezena je na Washingtonovu spomeniku u
Washington D.C.-u, Sjedinjenim Americkim DrZavama, 1884. godine. Ukupna koli¢ina tada
iznimno rijetkog 1 skupog materijala upotrebljena je za izradu vrha stupa i iznosila je nesto
ispod 3 kilograma [5]. U dvadesetim godinama 20. stolje¢a procesom elektrolize smanjuju se
troSkovi proizvodnje aluminija za 80% te se javlja prva konkretnija primjena aluminija.
Osnovni nosivi dijelovi zgrade, kao i interijer Empire State Buildinga, izgradenog 1931.
godine, izradeni su upravo od aluminija [6].

Najstarijom primjenom aluminija u gradnji smatra se oblaganje kupole crkve San
Gioacchino u Rimu, u Italiji, neobradenim aluminijskim limovima 1898. (slika 2.a) [7].
Danasnji je primjer impozantnog aluminijskog krova zabavnog parka Ferrari World u Abu
Dhabiu, u Ujedinjenim Arapskim Emiratima, sa povr§inom od 200 000 m? (slika 2.b) [8].

Slika 2. a) Crkva San Gioacchino u Rimu [7]; b) Ferrari World u Abu Dhabiu [8]

S obzirom na malu tezinu i otpornost na koroziju, najées¢a primjena u gradevinarstvu
odnosi se na konstrukcije koje se nalaze u vlaznim 1 korozivnim sredinama, konstrukcije na
nedostupnim mjestima odnosno na one koje iziskuju posebne transporte i krovne sustave
velikih raspona kod kojih su promjenjiva optere¢enja mala u odnosu na stalna. Stambena
zgrada The Wave u Almereu, u Nizozemskoj, ima atraktivnu valovitu aluminijsku fasadu (slika
3.) gdje je zbog zahtjevanih oblika i s obzirom na visok sadrzaj soli i vlage aluminij bio idealan
izbor. Konstruktivni elementi su betonski [9].

Slika 3. Stambena zgrada The Wave, Almere, Nizozemska [9]
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Most Arvida (slika 4.) iz 1950. godine je prvi most na svijetu izgraden u cijelosti od
aluminija. Ukupna masa mosta iznosi 163 tone, §to je manje od polovice mase istovjetnog
mosta kada bi bio izraden u celiku [10]. I danas nosi titulu aluminijskog mosta s najve¢im
glavnim rasponom od 91.5 m, a slijede ga pjesacki mostovi glavnih raspona 50 do 65 m [11].

L S wa N

Slika 4. Most Arvida, Quebec, Kanada [10]

U izgradnji mostova, s obzirom da nedostatci postojeceg standarda ogranicavaju razvoj,
naj¢eS¢e se aluminij koristi u izradi pjeSackih mostova. Analiza izvrSena na 9 primjera
aluminijskih reSetkastih mostova u Kini [12] nastoji opravdano doprinijeti primjeni aluminija.
Na slici 5. prikazan je aluminijski pjeSacki most u Kanadi, raspona 44m, montiran iz tri
segmenta u samo jednom danu.

Slika 5. Aluminijski pjesacki most, Brossard, Kanada [13]

Prema trenutacnim podacima, gradevinska industrija u svijetu koristi 25% globalne
proizvodnje aluminija [14].

Aluminijske legure se generalno klasificiraju u dvije grupe: gnjecive (kovke) legure
koje se tope u peci a potom oblikuju izlijevanjem u kalupe, i lijevane legure koje se primarno
obraduju u ¢vrstom stanju. Finalni oblik gnjecivih legura postize se raznim postupcima
valjanja, kovanja, istiskivanja i slicno. Klasifikacija ovisi o moguénosti toplinske obrade,
osobito za serije koje mogu podlijegati toplinskoj obradi poput serije 6xxx. Kovke legure
svrstavaju se u devet serija, ovisno o kombinaciji legirnih elemenata. U oznaci serije prva
znamenka oznacava izvornu leguru, dok druga znamenka predstavlja modifikacije proizasle iz
izvorne legure. Zadnje dvije znamenke iskljuc¢ivo su nomenklaturnog karaktera.

T
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Ovim radom obratiti ¢e se pozornost ponajvise na gnjecive (kovke) aluminijske legure
s glavnim legirnim elementima magnezija 1 silicija, brojcane oznake EN AW 6xxx odnosno
kemijskog simbola AIMgSi. Uloga magnezija je poboljSanje korozijske otpornosti i otpornosti
u alkalnim otopinama. To su naj¢esce koriStene legure, dobro se zavaruju i oblikuju plasticCnom

deformacijom uz dobra antikorozijska svojstva. Za konstrukcijsku primjenu u nizu legura 6xxx
prikladne su legure EN AW-6082, EN AW-6061, EN AW-6005A, EN AW-6106, EN AW-

6063 i EN AW-6060, sve svrstane u razred trajnosti B [15].

Tablica 1. Usporedba mehanickih karakteristika ¢elika i aluminija pri sobnoj

temperaturi
Materijalna svojstva Celik (EN 1993-1-1) Aluminij (EN 1999-1-1)
pri sobnoj temperaturi S235 | 8275 S355 6060 T66 | 6082 T6
Gustoca [kg/m’] ~ 7850 = 2700
Jedini¢na tezina [kN/m?] ~78.5 ~27
Modul elasti¢nosti [MPa] 210 000 70 000
Poissonov koeficijent 0.3 0.3
Modul posmika [MPa] ~ &1 000 ~ 27 000
Karakteristi¢na vlaéna évrstoéa [N/'mm?] | 360 | 430 | 490 215(110) | 300 (185)
Koeficijent toplinskog razvlacenja [K™!] 12 -10° 23 -10°
Toplinska provodljivost [W/m°C] ~ 54 ~ 240
Specifi¢na toplina [J/kg°C] ~ 440 ~920
Taliste [°C] 1425-1540 660

Iz serija kovkih toplinski obradivih legura, Cesto se bira EN AW-6082 iz razreda
trajnosti B. Karakterizira je velika ¢vrstoca, kategorija I/II [15], dostupna je u obliku cijevi,
Sipki, punih ili Supljih istisnutih profila, plo¢a, limova i traka. Svojstva i ponaSanje ove legure
detaljno su ispitani na Fakultetu gradevinarstva, arhitekture i geodezije u Splitu (Tori¢ et al.
[16]). Ispitivanjem su odredili karakteristike aluminija naspram celika te na taj nacin otvorili
vrata njegovoj ucestalijoj upotrebi u gradevinarstvu.

Prednostima koriStenja aluminijskih legura u podru¢ju gradevinarstva bave se
Formisano et al. [17], istiCu¢i visok potencijal primjene tog materijala u vidu ekstrudiranja
slozenih oblika, ponaSanje spojeva 1 uredaja za sezimiCku zaStitu okvirnih celi¢nih
konstrukcija.

S obzirom na potrebe daljnjih istraZivanja, ali i dostupnost zahtijevane legure, posebna
pozornost dat ¢e se EN AW 6060 T66 koja takoder pripada razredu trajnosti B ali II/III razredu
cvrstoce. Izvornoj leguri iz serije 6xxx, rastvorno Zarenoj i umjetno dozrijevanoj kojoj se kroz
kontrolu propisanog postupka postizu bolja mehanicka svojstva u odnosu na istu leguru
tempera T6. Za razliku od EN AW-6082, nije dostupna u obliku limova, traka i plo€a, te nije
pogodna za kovanje.
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1.2. Konstrukcije u poZaru

Sve vecu pozornost pridaje se ekstremnim djelovanjima na konstrukcije, a poZar se s
obzirom na moguénosti nastanka i tip djelovanja svakako svrstava u jedno od njih. Kao pozar
definira se svaki proces gorenja koji se nekontrolirano $iri, a uslijed kojeg moze do¢i do
ozljedivanja ljudi ili oSte¢enja materijalnih dobara. Nazalost, najceS¢e nesre¢e dovedu do
uzimanja u obzir pojedinih izvanrednih optereéenja pa je tako do vecih promjena u propisima
o zastiti od pozara pokrenula tragedija u Sao Paulo, u Brazilu, 1974. godine, kada je u pozaru
poslovne zgrade stradalo 179 osoba.

U izvjestajima istrage napada na tornjeve Svjetskog trgovackog centra, s obzirom da je
projektiranjem predvidena moguénost udara zrakoplova, zakljueno je da je upravo pozar
odnosno dugotrajno izlaganje nosivih elemenata visokim temperaturama vjerojatan razlog
zasto su se neboderi urusili. Naime, pri udaru je oSte¢ena protupozarna zastita ¢eli¢nih nosivih
elemenata, koja je dovela do kolapsa konstrukcije u vremenu ispod 60 minuta.

Slika 6. Grand Kartal, Turska [18]

U pozaru na hotelu Grand Kartal na skijaliStu u Turskoj (slika 6.) u sije¢nju 2025., poginulo
je 79 ljudi. Pretpostavlja se da su glavni uzroci katastrofe u ovim razmjerima neadekvatan
protupozarni sustav koji nije sadrzavao sustav sprinklera te je fasada unato¢ tome Sto je
kategorizirana kao negoriva prenijela vatru na gornje katove [19].

Nemoguce je predvidjeti gdje 1 kada ¢e nastati pozar, stoga su nuzne preventivne mjere
koje ¢e osigurati dostatnu sigurnost u slucaju pojave pozara. Pozar se kao takav ne moze
striktno definirati stoga je potrebno sagledati Siru sliku istrazivanja, poCevsi od materijala, tipa
konstrukcije 1 samog definiranja pozarnog optere¢enja. Djelovanja na konstrukciju u pozaru, u
postupku gasenja te redukciju svojstava po izlozenosti pozaru svakako se trebaju sagledati ve¢
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na razini materijala. lako su konstruktivni metali poput ¢elika i aluminija negorivi te ne dolazi
do degradacije presjeka nosivih elemenata kao takvih, djelovanje pozarnog opterecenja
manifestira se kroz degradaciju mehanickih svojstava materijala. Sigurnost pojedine
konstrukcije ovisi 0 mnogo faktora o kojima treba voditi racuna ve¢ kod projektiranja kako bi
bili sigurni da konstrukcija nece otkazati barem onoliko koliko je potrebno za sigurnu
evakuaciju svih korisnika. Da bi se zastitilo ljudske Zivote i materijalnu imovinu, svakako treba
pristupiti daljnim istrazivanja kako bi uz dosadasnje iskustvo i1 opisana saznanja unaprijedili
sigurnost gradevine u slucaju pozara.

Problematika pozara, kao izvanrednog djelovanja na nosivu konstrukciju, zastupljena je u
sedam od deset eurokodova. Za povrSine izloZene pozaru, toplinsko djelovanje dano je neto
tokom topline koji uzima u obzir prelazak topline strujanjem (konvekcijom) i zracenjem
(radijacijom). Temperatura plina proracunava se usvajanjem nazivne krivulje temperatura-
vrijeme ili u skladu s pozarnim modelom.

Primjerice temperatura plina u pozarnom odjeljku, u stupnjevima celzijusa, zadana
nazivnom krivuljom standardnog pozara definirana je logaritamskim izrazom:

0 = 20 + 3451logy((8t + 1)
gdje je t — vrijeme u minutama [20].
Unosom vrijednosti u navedeni izraz, dobije se graf krivulje standarnog pozara prikazan na

slici 7.

Krivulja standardnog pozara
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Slika 7. Nazivna krivulja standardnog poZara

Naravno, proracun toplinskih djelovanja mogu¢ je i primjenom adekvatnih fizikalnih
modela kojima se predvida proraunska vrijednost poZarnog opterecenja ovisna o namjeni
prostora kojom se tada odredi i karakteristi¢na gusto¢a po povrSini poda projekta za koji se
odreduje pozarno opterec¢enje. Usvojeni model proracuna konstruktivnog sustava prema normi
mora voditi raCuna 1 o ponaSanju konstrukcije u pozaru odnosno ocekivano ponaSanje njenih
konstruktivnih elemenata 1 spojeva. Cjelokupan prikaz proratuna dokaza poZarne otpornosti
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na primjeru ¢elicne krovne konstrukcije sportske dvorane ,,Spaladium Arene* obradili su Peros
1 Boko [21].

1.3. Otpornost aluminijskih konstrukcija u poZaru

Za konstrukciju projektiranu na pozar, odreduje se mehanicka otpornost za mjerodavnu
izloZenost pozaru pri kojoj ¢e nosiva konstrukcija o€uvati svoju funkciju na mjerodavnu
kritiénu temperaturu odnosno vrijeme. Ljudi moraju biti u moguénosti evakuirati se prije nego
konstrukcija dozivi kolaps. Normama se propisuju tipi¢na vremena otpornosti na pozar od 30,
60, 90 i 120 minuta.

Aluminijske legure imaju niZzu temperaturu taljenja odnosno aluminijske konstrukcije
imaju sniZzenu otpornost na pozar. Mehanicka svojstva aluminija pri visokim temperaturama
degradiraju brze nego $to je to slucaj kod celika. Kod pojedinih legura dolazi do degradacije
mehanickih svojstava ve¢ pri temperaturama visima od 100°C. Znacajne degradacije
mehanickih svojstava aluminijskih legura javljaju se pri temperaturama visima od 200°C.
Konstitutivno ponaSanje aluminijskih legura pri poviSenim temperaturama uvelike je pod
utjecajem vremenski ovisnih deformacija - puzanja.

Kako razvoj temperature u nekom materijalu ovisi o toplinskim svojstvima toga istog
materijala, vazno je prouciti specifini toplinski kapacitet (slika 8.) te koeficijent toplinske
vodljivosti (slika 9.) aluminija u ovisnosti o temperaturi. Vidljiv je problem poZarne otpornosti
konstrukcija od aluminija zato §to se u slucaju pozara, a zbog visoke vrijednosti koeficijenta
toplinske vodljivosti, temperatura u konstruktivnim elementima od aluminijskih legura puno
brze $iri, dovodec¢i do relativno brze redukcije nosivosti elemenata. Medutim, aluminij kao
dobar reflektiraju¢i materijal, ima dva puta manju povrsinu emisije u odnosu na uglji¢ni celik
[22].
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Slika 8. Specificni toplinski kapacitet aluminijskih legura u ovisnosti o temperaturi
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Slika 9. Koeficijent toplinske vodljivosti aluminijskih legura u ovisnosti o temperaturi

Relativna toplinska deformacija odnosno izduzenje u ovisnosti o temperaturi, sa gornjom
granicom od 500 °C definirana je normom i moZze se iskazati kao na slici 10.
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Slika 10. Relativno toplinsko izduZenje aluminijskih legura u ovisnosti o temperaturi

Ispitane vrijednosti redukcije mehanickih svojstava moze se iscitati vrijednostima omjera
za dogovornu granicu popustanja pri poviSenim i onih pri sobnim temperaturama a koje su
dane Eurokodom. Vrijednosti su definirane do temperature od 550°C pri izloZenosti toplini na
vrijeme od dva sata. Ista problematika ispitana je i za modul elasti¢nosti ve¢ine legure, a
preostale tek trebaju biti dokumentirane buducéim ispitivanjima.

Kada su metalni elementi izloZeni temperaturama viS§ima od 170 °C dulje od 30 minuta,
potrebno je sagledati 1 ucinke prolaznog toplinskog puzanja. Kod aluminijskih legura pri
poviSenim temperaturama pri odredivanju otpornosti elementa na izvijanje u pozaru u proracun
se uvodi i1 dodatan faktor redukcije iznosa 1.2 [23].
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1.4. Propisi — norme — europski zahtijevani standardi

U svijetu su u primjeni Cetiri medunarodna standarda za primjenu nosivih aluminijskih
legura odnosno za projektiranje aluminijskih konstrukcija, a navedeni su u tablici 2.

Tablica 2. Medunarodni standardi za projektiranje aluminijskih konstrukcija

Medunarodni standardi za projektiranje aluminijskih konstrukcija

Oznaka standarda Naslov standarda (opis)

AA ADM-2020 [24] | Priru¢nik za projektiranje aluminija
Australski/Novozelandski standard:
AS/NZS 1664:1997

Europski standard: EN 1999:2007 [15] | Projektiranje aluminijskih konstrukcija

Kineski standard: GB 50429-2007 [26] E(r)ivsléi Ez‘i}’;‘” ektiranje aluminijskih

[25] | Aluminijske konstrukcije

U Europi nosive aluminijske elemente prora¢unava se u skladu modela koje daje Eurokod
9 i nacionalni dodaci. Dio 1-1 [15] daje op¢a pravila za konstrukcije, a dio 1-2 [20] daje pravila
za projektiranje konstrukcija otpornih na pozar. Dijelovi od 1-3 do 1-5 bave se specificnim
segmentima aluminijskih konstrukcija.

Proizvodnja podlijeze postupcima kontrole gdje svaka kombinacija legure i tempera
izvedena za pojedino trziSte odnosno u skladu s pripadaju¢om normom, uz striktne zahtjeve u
specifikacijama, definira pojedinu leguru. S obzirom na sve vecu popularnost aluminija,
Doksanovi¢ et al. [27] bavili su se obradom rezultata zadanih normom u odnosu na one
vrijednosti odredene eksperimentalno kako bi §to to¢nije procjenili mehanicka svojstva. Na
razli¢itim aluminijskim legurama serije 6xxx, Montuori et al. [28], ispitivanjem savojne
otpornosti pokazali su kako pravilnikom definirane vrijednosi mogu biti vrlo konzervativne u
odnosu na one dobivene eksperimentalno.

Eurokod 3, dio 1-2 [29] predlaze opc¢eniti model naprezanja-deformacije za ¢elik u pozaru,
a koji se sastoji od linearnog dijela, elipti¢nog i platoa granice istezanja. Takav prijedlog
modela sadrzi 1 implicitnu komponentu puzanja, €iji su utjecaj istrazivali Tori¢ et al. [30]
analizom bez utjecaja vremenski ovisnih deformacija - puzanja na celicnim elementima.
Zakljuc€eno je da Eurokodom implicitno zadano puzanje nije dovoljno konzervativno da pokrije
sve potencijalne brzine zagrijavanja koje se u slucaju djelovanja poZara mogu pojaviti na
nosivim elementima konstrukcije.

Kako je oblik tipicne krivulje naprezanje-deformacija za aluminij razli¢itog oblika od one
za c¢elik, Eurokod 9, dio 1-2 [20], op¢eniti model za aluminij u pozaru bazira na tipu krivulje
koju predlazu Ramberg-Osgood [31].

Ponekad propisi zanemaruju karakteristicne razlike izmedu aluminija 1 celika te
primjenjuju slicne metodologije. Dodatnim ispitivanjima i valoarizacijom mogu se upotpuniti
kako bi se u obzir uzelo pojedinosti svakog materijala i konstrukcija [32].

Vrijednosti dogovorne granice popustanja pri trajnoj deformaciji od 0.2% dane Eurokodom
9, dijelom 1-2, bazirane su na stacionarnim testovima. Po Maljaarsu i Katgermanu, podaci o
¢vrstodi trebali bi se temeljiti na nestacionarnim testovima jer trenutne vrijednosti su, ovisno o
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leguri, nesigurne ili previSe konzervativne pri projektiranju pozarne otpornosti [33]. Tu bi tezu
svakako trebalo dodatno ispitati usporedbom razli¢itih tipova ispitivanja.

2. Pregled istrazivanja
2.1. Eksperimentalna ispitivanja na aluminiju

Za mnoge konstrukcije u kojima je popularna uporaba aluminijskih legura, posebno
karakteristicnim primjenama aluminijskih legura u konstrukcijama s visokim rizikom od
pozara — primjerice stambene jedinice na platformama za buSenje, znacajno je projektiranje
provesti u skladu s EN 1999-1-2 [20] koji definira pravila za dimenzioniranje aluminijskih
konstrukcija s potrebnom pozarnom otpornosti. Ali, navedena norma primjerice ne sadrzi
modele za projektiranje uzimajuéi u obzir lokalno izvijanje.

Mnogi istrazivacki timovi rade s ciljem S§to potpunijeg razumijevanja svojstava
aluminijskih legura i ponaSanja konstrukcija izradenih od istih. Georgantzia et al. [34] proveli
su iscrpne obrade dosadasnjih spoznaja eksperimentalnih, numerickih i analitickih radova pod
cijelim spektrom uvjeta i namjena aluminijskih legura.

Mnoge postojece studije fokusirale su se na ispitivanje materijalnih svojstava aluminijskih
legura i ponasanja konstrukcija od aluminija na sobnim temperaturama, ali njihov preformans
i preostala nosivost po izlozenosti temperaturnim opterecenjima slabo su istrazeni. Tek mali
broj studija objavljen je na temu stabilnosti u pozaru, a cjelokupan pregled istrazivanja iskazan
je u tablici 3.

Jedan od zacCetnika teorijskog i1 eksperimentalnog istrazivanja utjecaja puzanja na izvijanje
aluminijskih stupova bio je Chapman [67], pokuSavaju¢i predvidjeti gubitak stabilnosti pri
konstantome optere¢enju. Izvijanje popularnih aluminijskih legura ispitivano je brojnim
eksperimentima pri sobnoj temperaturi [42, 44, 45, 49, 51, 53, 55, 56].

Kaufman je usporedio rezultate vlacnih ispitivanja svojstava preko 150 aluminijskih legura
1 pripadajucih tempera pri razli¢itim poviSenim temperaturama. Ukazao je na to kako za ve¢inu
aluminijskih legura odnos modula elasticnosti pri poviSenim temperaturama i pri sobnoj
temperaturi ne opada jednako poput odnosa dogovornih granica popustanja u navedenim
uvjetima [68].

Da bi se istrazilo vremenski ovisne deformacije ili naprezanja, posebno kada je materijal
podvrgnut poviSenim temperaturama, Shivakumar et al. [69] proveli su testove puzanja
aluminijske legure 6061-T6 pri rasponu temperatura od 300°C do 400°C te pri razli¢itim
razinama naprezanja. Sliénom tematikom bavili su se Zhao et al. [70] na ¢eliku te Kumar et al.
[71] na aluminiju pri temperaturi od 150°C. Spoznato je da oblik krivulje naprezanje-
deformacija varira njihovom poveznicom ovisno o vrsti aluminijske legure. Nadalje, oblik
krivulje naprezanje-deformacija jednake legure nije jednake forme kada je legura pri sobnoj
temperaturi i kada je izloZena poZarnome opterecenju [33, 66].

SVEUCILISTE U SPLITU
FAKULTET GRAPEVINARSTVA, ARHITEKTURE I GEODEZIJE

10



KVALIFIKACIJSKI DOKTORSKI ISPIT
DOMAGOJ BENDIC, STUDENTI 2025.

Tablica 3. Eksperimentalna ispitivanja na aluminiju

ISPITIVANJA PRI SOBNOJ TEMPERATURI
Tip ispitivanja Materijal Referenca
Vlacno Al — 6xxx, 7xxx - T6 [35] (2009.)
Vlacno (i ciklicka) Al — 6082-T6, 7020-T6 [36] (2018.)
Vla¢no Al —-7075-T6 [37] (2021.)
Savijanjem™ Al - 6061-T6 [38] (2015.)
Savijanjem Al — 6061-T6, 6063-T5 [39] (2017.)
Tla¢no Al [40] (1997.)
Tla¢no Al — 6082-T4, 6082-T6 [41] (1997.)
Tlacno Al — 6060-T4, 6060-T6 [42] (1997.)
Tlaéno Al - 6082-T4, 6082-T6 [43] (1999.)
Tlacno Al — 6xxX [44] (2000.)
Tla¢no Al — 6063-T5, 6061-T6 [45] (2006.)
Tlacno (i/ili savijanjem)* Al - 6061-T6 [46] (2006.)
Tlacno (i/ili savijanjem) Al - 6061-T6 [47] (2006.)
Tlacno* Al — 6082-T6 [48] (2010.)
Tla¢no Al — 6xxX [49] (2011.)
Tla¢no* Al — 6061-T6, 6063-T5 [50] (2014.)
Tlacno* Al —6061-T6, 6063-T5 [51] (2015.)
Tlacno (ekscentricno) Al - 6082-T6 [52] (2016.)
Tla¢no* Al —6061-T6, 6063-T5 [53] (2017.)
Tla¢no (ekscentri¢no)* Al - 6082-T6 [54] (2019.)
Tla¢no* Al — 6061-T6 [55] (2020.)
Tlaéno* Al —7A04-T6 [56] (2020.)
Posmi¢no* Al [57] (2020.)
Posmic¢no Al —6061-T6 [58] (2021.)
ISPITIVANJA PRI POVISENOJ TEMPERATURI
Tip ispitivanja Materijal Referenca
Vlaéno Al — 6082-T6 [16] (2017.)
Vla¢no Al — 6063-T5, 6061-T6 [59] (2019.)
Vlacno Al — 6082-T6 [60] (2019.)
Vlacno Al — 6xxx, 7020-T6 [61] (2020.)
Vla¢no Al — 6063-T5 [62] (2023.)
Tlaéno* Al — 6082-T6, 7108-T79 [63] (2000.)
Tla¢no Al —5083-H111, 6060-T66 [64] (2009.)
Tla¢no* Al — 6061-T6 [65] (2018.)
Tla¢no* Al — 6063-T5 [66] (2023.)
*testovima prethodilo vlacno ispitivanje uzorka materijala kako bi mu se odredila mehanicka svojstva

Uz Ceste simulacije koriStene paralelno s eksperimentalnim testovima kako bi se ispitala
validnost istih, sve su popularnije metode simulacija programima poput ABAQUS-a gdje se
izraduju FE modeli ili numeri¢ke analize koje se validiraju podacima dostupnim u literaturi
[72-75]. Numericke simulacije predstavljaju svojevrstan izazov, ali nadopunjuju ograni¢en
broj podataka dobivenih eksperimentalnim ispitivanjima na temelju kojih su modeli i1
kalibrirani. Krivulje naprezanje-deformacija dobivene ispitivanjem materijala prilagodene su
te primijenjene u odgovaraju¢im modelima. Za simulaciju mehanickih svojstava moze se
upotrijebiti Ramberg-Osgoodov model, koji prema Eurokodu definira odnos naprezanja i
deformacija. Medutim, zbog poteskoca s konvergencijom, pojedini autori radije primjenjuju
Hopperstadov eksponencijalni model, parametrima prilagoden R-O krivulji [72, 73].
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Aluminijske legure karakterizira velika varijabilnost na konstitutivnoj razini, Sto se reflektira
kroz razliCite vrijednosti Ramberg-Osgoodova eksponenta. Definirana konstantna materijalna
svojstva omogucavaju brojne analize uz varijaciju bezdimenzionalnih parametara poprecnih
presjeka i raspona. Puzanje se definira Dorn-Harmathyjevim modelom koji opisuje primarnu i
sekundarnu fazu puzanja. Potrebno je odrediti materijalne karakteristike i svojstva za
kalibraciju. Utjecaj naprezanja je ukljucen preko Zener-Hollomanova parametra, a utjecaj
temperature iskazan je Arrheniusovim izrazom. Gustoa mreze ovisna je o sustavu, nije
konstantna, te se u pravilu povecava u blizini presjeka gdje se javlja maksimalan moment.

Maljaars et al. [64] proveli su brojna eksperimentalna ispitivanja kako bi definirali odnose
naprezanja 1 deformacija aluminijskih legura pri poviSenim temperaturama te samo ponasanje
legure u takvim uvjetima, stavljajuéi poseban naglasak na utjecaj puzanja materijala. U
ispitivanjima, na leguri 6060-T66, potrebnima za odredivanje mehanickih svojstava varirali su
veli¢inu raspona odnosno brzinu prirasta deformacije ovisno da li se radilo o ispitivanju do
0.2% granice tecenja ili o ispitivanju do loma, pritom vode¢i racuna i o temperaturi. Dokazali
su da aluminij veéinu svoje nosivosti gubi u temperaturnom rasponu od 175 do 350 °C, stoga
je potrebno razmatrati pasivnu zastitu od pozara koja bi bila prikladna barem za navedeni
raspon. Dodatno treba voditi racuna i da bude dovoljno fleksibilna za deformacije koje se
uslijed temperaturnog opterec¢enja mogu javiti. [76].

Jiang et al. [65] istrazivali su ponaSanje stupova, od aluminijske legure 6061-T6 pri
tlanome opterecenju i defektima proizslima iz pozara. Usvojeno je Sest razina temperatura u
visini do 400°C, ukljucujuéi sobnu temperaturu od 20°C. Po dostizanju ciljane temperature, a
nakon kratke faze namakanja, izvrSeni su tla¢ni testovi do otkaza.

Tori¢ et al. [16] proveli su dva tipa eksperimentalnih testova kako bi dobili deformacije
povezane naprezanjem 1 one povezane s puzanjem — stacionarni test puzanja. Prvi tip testa
proveden je uz konstantnu brzinu prirasta naprezanja od 10 MPa/s na uzorcima koji su
prethodno zagrijavani na nacin da uzorak postigne gotovo uniformnu temperaturu — proces
zagrijavanja 1 zatim 30 minuta zadrZavanja na konstantoj temperaturi pe¢i. Drugi tip
primijenjen je za odredivanje deformacija od puzanja, a proveden je uz jednoliko zagrijavanje
uzoraka koji su na Zeljenoj temperaturi zadrZzani 60 minuta te potom pri toj ciljanoj,
konstantnoj, temperaturi optereceni konstantnom razinom naprezanja u vremenskom intervalu
do 20 sati. Po analizi legure EN AW 6082 T6 eksperimentalno iskazanim postupcima, odreden
je kriti¢ni interval temperatura za razvoj deformacije od puzanja u rasponu od 200 do 300 °C.
Dodatno, predlozen je analiticki model deformacija zbog puzanja koji se pokazao adekvatan
za prikaz rezultata testova deformacija uzimajuci u obzir sve tri faze puzanja.

Liu et al. [60] bazirali su rad na aluminijskoj leguri 6082-T6 gdje su uzorci bili zagrijavani
na osam razli¢itih temperatura u rasponu od 100°C do 550°C i potom prirodno ohladeni ili
ohladeni vodom §to simulira gaSenje vodom u poZaru. Potom su provedena stacionarna vlacna
ispitivanja preostalih mehanickih svojstava pri sobnoj temperaturi.

Su et al. [59] vla¢nim ispitivanjima proucavali su legure 6063-T5 i 6061-T6 pri
temperaturama do 600°C. Inicijalna ispitivanja provedena su na temperaturi od 24°C.
Provedeni su stacionarni i nestacionarni testovi, ¢ije su dobivene vrijednosti usporedene s
americkim 1 europskim standardima.
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Sun et al. [62] su na leguri 6063-T5 proveli testove zagrijavanja brzinom 15 °C/min u
rasponu temperatura od 20 °C, koja predstavlja sobnu temperaturu i inicijalna mehanicka
svojstva, do 550 °C te postpozarno ispitivanje materijala. Po dostizanju ciljane temperature
uzorci bi tijekom 30 minuta prosli fazu izlaganja testnoj temperaturi te bi bili ostavljeni da se
prirodno ohlade. Geometrija uzorka i brzine prirasta optere¢enja u skladu su s onima danim
EN ISO 6892-1 [77]. Jos jednom potvrden je znatan utjecaj toplinskog djelovanja na svojstva
konstruktivne aluminijske legure, posebno pri temperaturi visoj od 200 °C, te je predlozen niz
modela za procjenu preostalih svojstava. Dodatno su proveli i tlaéna ispitivanja [66] na
stupovima od istoimene legure te izloZzene jednakim uvjetima, pri ¢emu su ukazali na Cesto
zanemaren utjecaj ocvrs¢ivanja materijala.

250
25°C
100 °C
200 —200 °C
300 °C
= 400 °C
E 150 450 °C
=~ —500 °C
8 —550°C
o 100 4
50 A
0 T T T T r
0 5 10 15 20 25 30

Strain (%)

Slika 11. Krivulje naprezanja-deformacije, na uzorku debljine 4 mm [62]
prijevod eng. Stress — Naprezanja; eng. Strain - Deformacije

Zbog svojih karakteristika aluminij se u zadnje vrijeme ispituje i u obliku kompozitnih
greda od aluminijskih legura i betona kako bi se, za razliku od ¢eli¢no-betonskih, uz smanjenu
masu te probleme korozije 1 odrzavanja ispunili uvjeti nosivosti. Takvi kompoziti mogli bi
pronaci primjenu u gradnji mostova velikih raspona i industrijskih objekata. Dodatno se
provode istrazivanja kompozita ojacanih polimernim vlaknima kako bi se izbjeglo pojavu
povrsinske rupicaste korozije kojoj su neke legure sklone [78].

S obzirom na potrebe 1 primjenu, aluminijske legure ispituju se na svim razinamaiu drugim
srodnim strukama [79-81], §to moZe doprinijeti proSirenom pogledu ali rezultirajuci stvarnim
primjenama u graditeljstvu. Primjerice, Chybinski et al. [82] ispitali su uzorke EN AW 6060
T6 pod stati€kim 1 dinami¢kim reZimima opterecenja te usporedili promjene na mikrostrukturi.
Vecina ispitivanja provedena je i na sobnim 1 pri poviSenim temperaturama kako bi se uocile
promjene na mikrostrukturi. Upravo legura EN AW 6060 zbog karakteristicne mikrostrukture
legure ima sklonost jamicastoj koroziji, no toplinskom obradom odnosno umjetnim
dozrijevanjem poboljSava se korozijsko ponasanje [83, 84].
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2.2. Procjena svojstava i ponasSanja aluminijskih legura

Mikrostruktura aluminija formirana je u obliku kristalnih reSetki i samim time sklona
pogreskama koje karakteriziraju njegova svojstva. Poseban tip pogresaka su praznine, najcesce
nastale toplinskom obradom metala, a koje omogucéavaju difuzijsko gibanje atoma krutog
metala.

Uslijed duljeg izlaganja metalnog materijala opterec¢enju javlja se fenomen puzanja, koji je
posebno izrazen ukoliko se odvija pri viSim temperaturama. Generalno se deformaciju od
puzanja, kao funkciju vremena, dijeli na primarnu fazu s opadaju¢om brzinom deformacije,
sekundarnu fazu u kojoj je brzina konstantna i minimalna te tercijarnu fazu s rastu¢om brzinom
deformacije sve dok ne dode do loma. Deformacije od puzanja imaju znacajan utjecaj na
smanjenje ¢vrstoce i zato je tematika puzanja, osobito u poZarnim uvjetima, bila atraktivna od
same primjene aluminija.

Sami pocetci istrazivanja deformacija od puzanja metalnih greda u nestacionarnim
procesima zagrijavanja u pozaru pocinju s Harmathyjevim istrazivanjem [85, 86]. Uvidio je
vaznost puzanja u procesima nalik pozaru te izradio "proSireni” model na bazi izvorno
predlozenog Dornova modela puzanja [87], koji se ve¢ u pedesetim godinama 20. stoljeca
zalagao za eksperimentalne verifikacije puzanja uz videnje puzanja kao posljedicu
mikrostrukturnih promjena uzrokovanih visokom temperaturom. Po Harmathyju analiticke 1
numericke metode nisu bile dovoljno prilagodene prakti¢énim zahtjevima proracuna greda u
procesima zagrijavanja, stoga predlaze svoj model, no idalje postoje ograni¢enja u vidu oblika
raspodjele opterecenja.

Pocetkom 21. stolje¢a Suzuki et al. [88] proveli su niz ispitivanja na stupovima i gredama
od aluminijskih legura pri pozarnome optere¢enju da bi odredili odnos naprezanja i kriti¢ne
temperature. Definirali su numeric¢ke jednadzbe za predvidanje porasta temperature elementa
odnosno jednadZbu procjene kriti€ne temperature elementa izloZenog zagrijavanju. Model je
potvrden eksperimentalno dobivenim podacima tijekom ispitivanja pozarne otpornosti
aluminijskih stupova i greda.

Maljaars et al. [89] uvidjeli su mane konstuitivnog modela kojeg predlaze Harmathy [85]
odnosno slucajeve kada se isti ne moze primijeniti. Razvili su model s kona¢nim elementima
kao alat verifikacije konstuitivnog modela za aluminijske legure izloZene pozaru. Navode i da
postoje¢i model nije reprezentativan za seriju legura 6xxx jer ju karakterizira rani razvoj
tercijarne faze puzanja. Naime, Maljaars et al. [33] odabiru dvije uestale konstruktivne legure
koje imaju drugaciji odziv na poviSenim temperaturama, 5083-O/H111 i 6060-T66, za razvoj
konstituivnog modela modificiranjem postoje¢eg Dorn-Harmathy modela. Validacija je
provedena nestacionarnim testovima koji simuliraju realan poZar kojemu su izloZeni zaSti¢eni
aluminijski elementi. Testovi su provedeni uz zagrijavanje od 2,4 °C/min do 11 °C/min uz
razine naprezanja od 20 do 100 N/mm?.

Vec¢ spomenuta ispitivanja Maljaars et al. [76] dovela su do modificiranog modela odnosa
naprezanja-deformacija u nestacionarnome reZzimu za aluminijske legure izloZene poZarnom
opterecenju, prvotno predlozenog od Dorna odnosno Harmathyja. Maljaarsovo proSirenje
modela, uz prilagodbu parametara svojstvenih pojedinoj leguri, primjenjivao je i Soyal [90]
koji ga je validirao nestacionarnim testovima s rastu¢om temperaturom i konstantnom ili
promjenjivom silom. Dodatno upucuje na razlike zavarenih odnosno nezavarenih uzoraka.
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Razlike u ¢vrstoc¢i izmedu zone utjecaja topline (eng. Heat Affected Zone - HAZ) i osnovnog
materijala opadaju s porastom temperature, ali pri 300 °C 1 viSima se podudaraju. Sli¢nu
tematiku obradili su Kandare et al. [91] kada su prema izvornim prijedlozima Maljaarsa i
suradnika izvrSili analiticku provjeru kao podlogu za daljnja ispitivanja. Dodatno su
implementirali parametre kako bi doradili model za procjenu otkazivanja tlatno optere¢enih
aluminijskih elemenata izloZzenih pozaru. Prognoza temperature odnosno vremena pocetka ili
vremena konacnog otkazivanja stupa validirana je ispitivanjima na aluminijskoj plocici. Stoga
je, unatoC skladu eksperimentalnih i analitickih rezultata, treba uzeti s oprezom.

Fogle et al. [92] predlozili su jednostavan analiticki model za predvidanje pojava
otkazivanja u slucaju pozaru, ali ne uzimajuci u obzir utjecaj puzanja i pocetnih imperfekcija.
Ispitivanja su provedena na plo¢ama varirane geometrije pod tlatnim optere¢enjem i
izlozenosti konstantnom toku topline.

Nastavno na istrazivanja razvoja deformacija puzanja u celiku, Tori¢ et al. [93] proucavali
su istu tematiku na aluminiju izlozenom visokim temperaturama. Obradili su dislokaciju
uspona na slobodnu susjednu ravninu klizanja kao najvazniji mehanizam deformacija od
puzanja pri visokoj temperaturi. Izradili su reoloSki model uzimajuéi u obzir sve tri faze
puzanja, s primjerom kalibracije na celik klase S275 i aluminijsku leguru EN AW 6082-T6,
primjenjiv na bilo koji metal koji karakterizira puzanje pri povisenoj temperaturi uz radom
definirana ogranicenja.

Zheng i Zhang [94] su na gredama izradenima od aluminijskih legura 5083-H112 i 6060
T66 proveli istrazivanja nezaSticenih i zaSti¢enih aluminijskih greda pri normalnim i pri
visokim temperaturama. S obzirom na izradene modele i provedena ispitivanja, ukazali su na
konzervativan pristup kriticnoj temperaturi izracunatoj u skladu s Eurokodom 9. Predstavljene
su pojednostavljene formule za prirast temperature odnosno, ovisno o leguri, proracun kriti¢ne
temperature. Usporeda rezultata pojednostavljenih jednadzbi 1 vrijednosti dobivenih
ABAQUS-om upucuju na dobro podudaranje rezultata (slika 12.). Pojednostavljeno dobiveni
rezultati usporedeni su i s eksperimentalno dobivenim podacima gdje se takoder vidi dobro
slaganje, uz nesto konzervativnije, pojednostavljeno dobivene vrijednosti.
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Slika 12. Usporedba kriticne temperature [94]

prijevod eng. Simplified — Pojednostavljeno; eng. Calculated using ABAQUS — IzraCunato
ABAQUS-om
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Megalingam et al [95] proveli su ispitivanja pri konstantnoj temperaturi od 250 °C kako bi
proucili ponaSanje pri puzanju aluminijske legure 7075 uz visoke, konstantne uvjete naprezanja
i pri visokim temperaturama. Za opisivanje puzanja koriStena je Norton-Baileyjeva jednadzba
koja povezuje prirast puzanja s primijenjenim naprezanjem, temperaturom i materijalnim
karakteristikama. Klju¢nu ulogu u predvidanju puzanja ima eksponent deformacije koji je ovim
radom odreden kao n=4.6 za raspon naprezanja od 30 do 70 MPa i ve¢ navedenu temperaturu.

Modeliranjem odnosa deformacija puzanja i ocvrS¢ivanja starenjem pod razliitim
toplinskim i mehanickim opterecenjima [96] definiran je cijeli set konstituitivnih modela
ispitivanjem aluminijske legure AA7050 koji po prvi put ima sposobnost ucinkovito
predvidjeti klju¢na mikro i markosvojstva bez obzira na razliCita inicijalna stanja i povijest
opterecenja nekog elementa.

S obzirom na ¢estu uporabu legure 7075 u podrucjima visokih temperatura, ispitano je
ponaSanje eksponenta naprezanja u odnosu na temperaturu i naprezanje, kao 1 mehanizmi
puzanja za koje se oc¢ekuje da dominiraju u takvim uvjetima [97, 98, 99]. Razvijeni su i
konstitutivni modeli pri povisenim temperaturama [100, 101], zajedno s modelom puzanja za
visokovrijedne aluminijske legure [102].

Sun et al. [103] proveli su opsezna ispitivanja na leguri 7075-T6 odredivsi krivulje 1
svojstva materijala tijekom 1 nakon poZara u rasponu od 20 °C do 550 °C. Odredeni su
koeficijenti redukcije za navedenu leguru i1 temper te definirana serija modela za predvidanje
krutosti 1 ¢vrsto¢e aluminijskih legura visokih ¢vrstoca tijekom poZara 1 nakon njega. Smatrali
su da izvorni Ramberg-Osgoodov model nije prikladan za definiranje cijelog opsega
deformacija aluminijskih legura tijekom 1 nakon pozara. Autori su razradili i prilagodili model
autora Yun et al. [104] koji su na temelju baze podataka sastavljene od preko 700 krivulja
naprezanje-deformacija pri sobnoj temperaturi predlozili modificirani dvostupanjski Ramberg-
Osgoodov model. Eksperimentalno odredene krivulje naprezanja-deformacije, za svojstva
tijekom pozarnog djelovanja i nakon njega, usporedene su s onima predvidenima temeljem
objedinjenoga dvostupanjskog modela iz ¢ije se dobre korespodencije potvrduje njegova
primjenjivost.
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Slika 13. Usporedba izmjerenih i modelom predvidenih krivulja naprezanja-deformacije
tijekom pozara [103],
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Slika 14. Usporedba izmjerenih i modelom predvidenih krivulja naprezanja-deformacije
nakon pozara [103],

prijevod eng. Stress — Naprezanja; eng. Strain — Deformacije; eng. Test curve — Ispitna
krivulja
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Nabarro [105] je napravio opsezan pregled 1 otvorio mnoga pitanja i sumnje u uvjerljivost
teorija modela Cistih metala. Uvidio je razlike u zakljuccima razli¢itih skupina autora koji su
ispitivali sli¢ne materijale vrlo sli¢nim metodama i uz slicne uvjete ispitivanja. UnatoC tome,
jednom od obradenih teorija Spigarelli i Sandstrom [106], razvili su osnovni model puzanja
prvotno razvijen za bakar i austenitni nehrdajuéi celik, a potom primijenjen na ¢isti aluminij.
Model ne ukljucuje nikakve podesive parametre ve¢ su svi unaprijed odredeni stoga je potpuno
predvidiv. Za procjenu razine puzanja potrebno je eksperimentalno odrediti sastav metala,
naprezanje i1 temperaturu. Ovakav model ukoliko se dokaze dovoljno pouzdanim predstavlja
izvrsnu bazu za daljnji razvoj na legurama aluminija o¢vr§¢ivanih dozrijevanjem.

2.3. Reolosko modeliranje aluminija

Za modeliranje mehanickog ponasanje materijala s dovoljnom preciznoséu, potrebno je
analiticki izraziti odnos izmedu naprezanja i deformacije. Ukupni deformacijski proces
metalnih materijala pri poviSenim temperaturama, koji se sastoji od triju komponenti, pri cemu
jedna predstavlja deformaciju puzanja, prikazan je 1980-ih u radu Anderberga [107].

gtot = En(T) + £5(0,T) + £.(0,T, t)

PredloZena formulacija ukupne deformacije &;,; opisuje se s termalnom komponentom &5, (T)
koja ovisi samo o temperaturi, komponentom vezanom uz naprezanje £,(o,T) ovisnoj o
primijenjenom naprezanju i temperaturi, te komponentom deformacije puzanja &, ,(0,T,t).
Potonja je najkompleksnija jer ovisi o naprezanju, temperaturi i vremenu.

Uskladenost odredenog broja modela koji se predlazu za predvidanje pojedinih materijalnih
karakteristika vazan je korak u razvoju kvalitetnog reoloSkog modela. Medu prvima, 1973.
godine, to su uvidjeli Helman i Creus [108] koji su na primjeru betona predlozili prvi reoloski
model za opisivanje nelinearnih deformacija 1 otkazivanja nosivosti. Razvili su izraze za
trenutne i1 vremenski ovisne deformacije pri konstantnome naprezanju. Adekvatno su
prilagodili eksperimentalne rezultate odnosno validirali elemente unutar modela na serijama
pojedinacnih elemenata 1 izradili Kelvinov model sastavljen od opruge i priguSivaca s
pripadaju¢im konstantama. Chindam et al. [109] na celiku su izvrSili ciklicka ispitivanja s
naprezanjima ispod granice tecenja te promatrali utjecaj topline proizisle iz cikli¢kih procesa
na materijal. Za simulaciju viskoelasticnih odgovora su koristili reoloSke modele Kelvin-
Voigtova i Maxwellova tipa. Ti modeli sastoje se od opruge i prigusivaca koji su povezani
serijski, odnosno parelelno, pri ¢emu elasti¢nu prirodu materijala simulira opruga, a viskoznost
prigusivac. Iskazano je kako Kelvin-Voigtov model bolje opisuje promatrane mehanicke 1
termomehanicke odgovore polikristalnih materijala u elasticnom rezimu opterecenja te je
predlozena provjera upravo na aluminiju.

Slika 15. Shematski prikaz Kelvin-Voigtova i Maxwellova reoloskog modela
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Vec¢ su predlozeni modeli serijski spojenih Kelvin-Voigtovih elemenata, pri cemu svaki od njih
pokriva specific¢an tip deformacijskog procesa. Tori¢ 1 Burgess [110] razvili su reoloSki model
sastavljen od serijski spojena dva Kelvin-Voigt elementa, pri ¢emu prvi predstavlja
komponentu mehani¢ke deformacije, a drugi viskoznu deformaciju od puzanja. Model je
sposoban iskazati dvije od triju komponenti ukupne deformacije pri bilo kojoj temperaturi.
Izostavljena je komponenta klasicne termalne deformacije, ovisna samo o temperaturi.
Verifikacija je potvrdena prvo na brojnim eksperimentalnim rezultatima razlicitih izvora [111],
a potom 1 na vlastitim ispitivanjima na celiku klase S275 odnosno aluminijskoj leguri 6082-T6
[93, 111] uz kalibraciju elemenata svojstvima dobivenim na celiku u rasponu 400°C do 600°C
odnosno u rasponu 200°C do 300°C na aluminiju. Takav model, pod uvjetom adekvatnih
kalibracija konstitutivnih komponenti, primjenjiv je na bilo koju vrstu i gradaciju uglji¢nih
Celika (S235-S355). Moze se smatrati i da je navedeni model zapravo baza za univerzalan
reoloski model metala koje karakterizira puzanje pri poviSenim temperaturama.

o.¢ — 0™ %
k1 k2

1] ]

1] |

c1 C2

Slika 16. Shematski prikaz Tori¢-Burgessova modela [110]
3. Diskusija

Proucavaju¢i aluminij, dolazi se do zakljucka da ga se ne moze promatrati kao jedan materijal.
Aluminij predstavlja skupine legura razlicitih svojstava gdje se dodatno razlikuju mehanicke
karakteristike legura unutar iste skupine. Konac¢ne razlike ovise o pripadaju¢em temperu. Zbog
toga istrazivaCi sve viSe provjera izvode na razliitim legurama uz iste uvjete ispitivanja.
Montuori et al. [28] su s viSe od 100 eksperimentalnih ispitivanja aluminijskih legura 6060-
T66, 6082-T6 1 6005A-T6 (15 provedenih i 86 prikupljenih iz literature), upozorili na
konzervativnost normi. Guo et al. [61] proveli su 169 vla¢nih testova legura 6082-T6, 6NO1-
T6, 6061-T6, 6061-T4 1 7020-T6 kako bi provjerili 1 komparirali njihove promjene svojstava s
obzirom na temperaturu. Brojnim ispitivanjima otvaraju se neke nove teme koje je potrebno
dodatno obraditi:

= Tla¢nim ispitivanjima legura 5083-H111, 6060-T66 i 6063-T5 ukazano je i na neke ne
toliko istrazivane cinjenice, poput porasta Poissonovog koeficijenta s porastom
temperature [64] 1 Cesto zanemarenog utjecaja ocvr§¢ivanja materijala kada je rije€ o
aluminijskim legurama [66].

= Jako su u prethodnim radovima odredeni minimalni utjecaji duljine vremena izlaganja
celicnih elemenata testnoj temperaturi [60], a s obzirom da dulje vrijeme dovodi do
izrazenijeg razvoja puzanja kod aluminijskih elemenata, potrebno je provjeriti koliko
¢vrstoc¢a ovisi o vremenu izlozZenosti [33].

= Maljaars i Katgerman smatraju podatke o ¢vrstoci iznesene u normama nedovoljno
pouzdanima jer su odredeni stacionarnim testovima koji su losiji prikaz realne poZarne
situacije [33]. Medutim, u radu [59] izrazi za granicu teCenja validirani su rezultatima
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ispitivanja u stacionarnome i nestacionarnome rezimu te nisu uocene vece oscilacije u
redukcijskim faktorima.

* Implicitno puzanje zadano europskim normama takoder se pokazalo neadekvatnim za
pojedina djelovanja pozara [30].

= Eurokod [20] sadrzava koeficijente redukcije svojstava poput dogovorne granice
popustanja i modula elasti¢nosti, odredenih dosadasnjim ispitivanjima pri povisenim
temperaturama. Redukcijski faktori dani su za diskretne temperature, a za vrijednosti
realne temperature potrebno je izvesti linearnu interpolaciju. Usporedbom s
eksperimentalno odredenim podacima smatra se da faktori nisu primjenjivi zbog
nedovoljne to¢nosti, osobito vrijednosti faktora za predvidanje modula elasti¢nosti.

Za precizan i vjerodostojan prikaz krivulja naprezanje-deformacija neophodna su barem tri
temeljna parametra materijala: granica razvlacenja, vlacna ¢vrsto¢a i modul elasti¢nosti. Zato
¢e posebna paznja biti usmjerena na zadnju tocku.

S porastom temperature znatno se samnjuje nosivost aluminijskih legura te je potrebno Sto
kvalitetnije procijeniti preostala svojstva tijekom pozara i nakon njega. Ve¢ osamdesetih
godina 20. stoljeca uocene su znatne redukcije ¢vrstoce 1 modula elasti¢nosti aluminijskih
legura pri poviSenim temperaturama. Poznato je i da su uz razlike u obliku krivulja naprezanje-
deformacija medu legurama, znatne razlike i oblika krivulje iste legure pri sobnoj temperaturi
u odnosu na onu pri poviSenoj temperaturi [33, 66]. Kao mjeru krutosti materijala uzima se
modul elasti¢nosti koji predstavlja odnos naprezanja i deformacije i moze se prikazati u krivulji
naprezanje-deformacija kao nagib pocetnog dijela dijagrama. Mjera krutosti od iznimne je
vaznosti pri odredivanju stabilnosti 1 sigurnosti konstrukcije. Vazno je istaknuti da norme
definiraju redukcijske faktore za materijalna svojstva materijala pri poviSenim temperaturama,
odnosno tijekom pozara, ali ih ne sadrzavaju iste i za svojstva nakon pozara. Svi koeficijenti
definirani Eurokodom 1 oni eksperimentalno odredeni u literaturi iskazani su na slikama 17. i
18. [112]. Na slici 17. graficki su prikazani faktori redukcije modula elasti¢nosti tijekom
pozara, dobiveni ispitivanjem razliCitih legura izlozenih poviSenim temperaturama. Rezultati
su usporedeni s krivuljom koju predlaze Eurokod te su uocene razlike ponaSanja pojedinih
legura uz neminovnu redukciju modula elasti¢nosti, Sto implicira kontinuirani gubitak krutosti
S porastom temperature.
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Slika 17. Usporedba rezultata ispitivanja modula elasti¢nosti tijekom poZzara i Eurokoda 9
[112]

Na slici 18. prikazana je usporedba faktora redukcije nakon pozara. Od iznimne je vaznosti
primjetiti da prakticki nema veéih redukcija, osim u primjeru legure 6082-T6, koja maksimalnu
redukciju od 30 % postize nakon izlaganja temperaturi od 500 °C. Prema rezultatima, omjeri
ostaju gotovo konstantni, $to bi znac¢ilo da modul elasti¢nosti nije pod utjecajem temperature
nakon §to se elementi ohlade.
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Slika 18. Usporedba rezultata ispitivanja modula elasti¢nosti nakon pozara [112]

Rezultati upucuju na mnogobrojne razlike medu aluminijskim legurama pogodnima za
konstruktivnu primjenu. Potrebna su daljnja ispitivanja da bi se popunili nedostaci normi za
projektiranje aluminijskih konstrukcija. Kako bi se istrazilo klju¢ne parametre ponasanja u
pozaru, nuzno je provesti numericke analize koje bi reducirale broj potrebnih skupih i
kompleksnih eksperimentalnih ispitivanja. Sukladno tome, javlja se motivacija za razvoj
univerzalnog reoloskog modela. Motivacija proizlazi iz potrebe integracije analiza
aluminijskih konstrukcija u pozaru, uzimajuéi u obzir sve sloZzene i vremenski ovisne
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komponente deformacija. Cilj je uzeti u obzir sve kljucne termomehanicke varijable:
temperaturu i prirast temperature, naprezanje i brzinu prirasta deformacija, koje Cine glavne
faktore ponasanja aluminija tijekom pozara. Tako detaljnom i preciznom procjenom utjecaja
pozara na konstrukciju unaprijedilo bi se razumijevanje slozenih procesa koji nastaju pod
ekstremnim uvjetima.

4. Smijernice i ciljevi istrazivanje

Zadnjih nekoliko desetljeca, posebno zadnjih nekoliko godina, aluminij se sve ¢es¢e koristi
u inzenjerstvu. Kao najvecéa prednost istaknuta je njegova nosivost naspram vlastite tezine uz
izvrsnu otpornost na koroziju. Grade se aluminijski mostovi te je kao konstruktivni materijal
sve vise zastupljen na terenu i na off-shore konstrukcijama. Karakteristike koje aluminij nudi
mogu uvelike sniziti troskove kontrole i odrzavanja. Zbog nedostatka informacija o nosivim
konstruktivnim elementima od aluminijskih legura vrSit ¢e se analiza utjecaja puzanja na iste,
posebno na stupove koji predstavljaju kljuan element nosive konstrukcije s aspekta kolapsa.
Radit ¢e se na iznalazenju novih modela puzanja koji bi bili primjenjivi za aktualne legure
aluminija odnosno poopé¢enom modelu za aluminijske legure koje se koriste u gradevinarstvu.

Pregledom dosadasnjih studija utvrdila se posebna problematika pozarne otpornosti
aluminija pa se na nju stavlja posebna pozornost. Generalno, pozarna otpornost nosive
aluminijske konstrukcije treba se odrediti preko jednog ili vise pristupa, a to su: jednostavni
proracunski modeli, slozeni napredniji proracunski modeli ili eksperimentalna ispitivanja. Da
se reduciraju troskovi ispitivanja u budu¢nosti, sukladno eksperimentalnoj analizi ponaSanja
radit ¢e se i na definiranju reoloskog modela u cilju $to ucestalije primjene i potvrda do sada
neispitanih legura.

4.1. Eksperimentalna ispitivanja na aluminiju

Aluminijske legure sve viSe su predmet istrazivanja zbog njihove povecane upotrebe u
gradevinarstvu posljednjih desetljeCa [34]. S obzirom na to da materijalna svojstva
aluminijskih legura zna¢ajno opadaju u pozaru posebno se ispituje aluminij izlozen poviSenim
temperaturama [113]. Slijedom navedenog, svjesni da postoje svojevrsna ogranicenja u vidu
projektiranja s aluminijskim legurama, potrebno je provesti dodatna ispitivanja kako bi se
dobila realna slika njihovih ponasanja pod razlicitim uvjetima, ali 1 moguénosti primjene zastite
od pozara. Metode vlacnog ispitivanja materijala i dijelova konstrukcije provodit ¢e se prema
ISO 6892.

Moguce je provoditi razli¢ite tipove ispitivanja ovisno o uvjetima i ciljanom ishodu.
Stacionarnim testovima uzorci se izlazu odredenoj brzini deformacije pri konstantnoj
temperaturi, a mjeri se sila odnosno naprezanje. Nestacionarnim testovima uzorci se izlazu
rastucoj temperaturi i odredenom naprezanju tijekom vremena, a mjeri se deformacija. Pri
odredivanju puzanja uzorci se izlaZzu konstantnoj temperaturi 1 konstatnom naprezanju tijekom
vremena, a mjeri se deformacija.

U sklopu Laboratorija za konstrukcije, Fakulteta gradevinarstva, arhitekture 1 geodezije u
Splitu, vla¢no ispitivanje planira se provoditi Shimadzu AGX-V univerzalnim
elektromotornim ispitnim strojem podnog tipa. S obzirom na karakteristi¢na vla¢na ispitivanja
materijala, kolokvijalno se naziva i kidalica. Kidalica je kapaciteta 250 kN vlacne sile i 500
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bara pritiska pridrzanja uzorka. Dodatno je opremljena automatskim robotiziranim
ekstenzometrom.

Slika 19. Univerzalni ispitni stroj Shimadzu AGX-V [114]

Uz kidalicu se planira koristiti pe¢ za zagrijavanje uzoraka SF2297C koja moze razviti
temperaturu do 1200°C odnosno izvr$iti zagrijavanje uzorka do 1000°C. Maksimalna brzina
zagrijavanja krece se u rasponu od 10 do 20 °C. Uz nju ¢e se koristiti pripadajuci ekstenzometar
sa zaStitama i ugradeni termoparovi tipa N za kontrolu temperature uzorka i same peéi.

Slika 20. Elektri¢na pe¢ SF2297F [115]

23
SVEUCILISTE U SPLITU
FAKULTET GRAPEVINARSTVA, ARHITEKTURE I GEODEZIJE



KVALIFIKACIJSKI DOKTORSKI ISPIT
DOMAGOJ BENDIC, STUDENTI 2025.

4.2. Razvoj novog modela

Od iznimne je vaznosti imati moguénost §to to¢nije procjene opsega osStecenja i statusa
materijalnih karakteristika odnosno mehanickih svojstava aluminija tijekom i nakon izlaganja
pozarnom opterecenju. Procjene mogu pomoci u donosenju odluke o tome §to s konstrukcijom
— potpuno je demontirati, izvrSiti potrebne sanacije ili ponovno poceti s uporabom.

Kako bi se izvrsila takva procjena konstrukcije odnosno procjena deformacije elementa, po
uzoru na model ¢elika kojeg su izradili Tori¢ et al. [ 110] pogodan za stacionarna i nestacionarna
ispitivanja na Celiku verificiran mnogim eksperimentalno dobivenim podacima na S275 1 S355
uz mogucénost prilagodbe razli¢itim klasama i vrstama celika, potrebno je razviti model
adekvatan aluminijskim legurama.

Provodit ¢e se laboratorijska istrazivanja i analize svojstava aluminijskih legura tijekom i
nakon izlaganja poviSenim temperaturama koja ¢e biti osnova za izradu modela procjene.
Inicijalno je potrebno provesti laboratorijska ispitivanja na sobnoj temperaturi te pri povisenim
temperaturama. Eksperimentalno dobivene vrijednosti materijalnih karakteristika uz
izlozenosti pozarnom opterecenju trebaju bit ¢e detaljno analizirane i1 usporedene s
pripadaju¢im karakteristikama na sobnoj temperaturi.

Na temelju niza usporedbi i detaljne analize, predlozit ¢e se predikcijski model za leguru
6060-T66 odnosno poopéeni model za aluminijske legure koji bi trebao omoguditi tocno
predvidanje pozarnih i post-pozarnih materijalnih svojstava.

Na taj nacin izbjeglo bi se velike troSkove eksperimentalnih ispitivanja u budu¢nosti koja
bi provjeravala pojedine aluminijske legure odnosno ponasanja konstrukcije koja je od iste
izgradena.

Sasso et al. [116] ispitali su razlike na istoj vrsti aluminijske legure u razli¢itom stanju, T6
1 O, te pri tom ukazali na znacajne varijacije duktilnog ponaSanja i loma ovisno o toplinskoj
obradi. Stoga je unato€ slicnom sastavu legura koje ¢e biti uzete u obzir, potrebno modelu
pristupiti s oprezom 1 provesti brojne dodatne validacije eksperimentalno dobivenim
vrijednostima.

Tablica 4. Eksperimentalno odredeni kemijski sastavi legura

Legura Al Cu Si Fe Mg Mn Zn Cr Ti

6082-T6 [16] 96.49 0.099 1.281 0.708 0.767 0.523 | 0.0615 | 0.0141 | 0.0108

6060-T66 [33] 98.92 | 0.0038 | 0.4463 | 0.1649 | 0.4135 | 0.0006 | 0.0055 | 0.0024 | 0.003

*u leguri 6082-T6 pronadeni su Ca, Pb i Sn, a u leguri 6060-T66 je pronaden maleni udio Ni;
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